Numeracy and Clinical Calculations for Nurses will help to increase your confidence and competence in calculating drug dosages and performing other important clinical calculations – a critical issue in improving patient safety.

KEY BENEFITS:
- Diagnostic test to assess your existing skills and knowledge
- Back to basics chapter uses a step-by-step approach to ensure understanding of basic numeracy – fully tested by nursing lecturers and their students
- Self-assessment tests throughout each chapter enable you to monitor your own progress
- Extensive worked examples use authentic clinical scenarios to set learning in context
- Summary tests provide practice for numeracy exams (answers provided)
- Covers drug dosages and other clinical calculations, such as pressure ulcer risk assessment tools, National Early Warning Score, hydration and fluid balance, Malnutrition Universal Screening Tool, BMI and ideal body weight

THE BOOK ALSO FEATURES:
- Error alerts pointing out common errors and why they are made
- Sense checks to help you avoid fundamental errors
- Tips to help with calculations and relate them to clinical practice
- Appendices covering safe administration of medicine, routes of administration, medication administration records, drug glossary and a handy multiplication grid.

THE AUTHOR:
Neil Davison is a Teaching Fellow at Bangor University and has many years’ experience of teaching drug calculations and numeracy skills to student nurses. He now teaches at Llandrillo College in North Wales.

Numeracy and Clinical Calculations for Nurses is required reading:
- before the numeracy test at your nursing interview
- during your 1st year at university as you prepare for further numeracy exams
- on the wards as you get to grips with drug doses, BMI, drip rates, fluid balance, etc.

AS A NURSE, YOU WILL NEED TO DO CLINICAL CALCULATIONS EVERY DAY – THIS BOOK WILL HELP YOU GET THEM RIGHT EVERY TIME!
NUMERACY AND CLINICAL CALCULATIONS FOR NURSES
HEALTH AND SOCIAL CARE TITLES AVAILABLE FROM LANTERN PUBLISHING LTD

<table>
<thead>
<tr>
<th>ISBN</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9781906052041</td>
<td>Clinical Skills for Student Nurses</td>
</tr>
<tr>
<td>9781906052065</td>
<td>Communication and Interpersonal Skills</td>
</tr>
<tr>
<td>9781906052027</td>
<td>Effective Management in Long-term Care Organisations</td>
</tr>
<tr>
<td>9781906052140</td>
<td>Essential Study Skills for Health and Social Care</td>
</tr>
<tr>
<td>9781906052171</td>
<td>First Health and Social Care</td>
</tr>
<tr>
<td>9781906052102</td>
<td>Fundamentals of Diagnostic Imaging</td>
</tr>
<tr>
<td>9781906052133</td>
<td>Fundamentals of Nursing Care</td>
</tr>
<tr>
<td>9781906052119</td>
<td>Improving Students’ Motivation to Study</td>
</tr>
<tr>
<td>9781906052188</td>
<td>Interpersonal Skills for the People Professions</td>
</tr>
<tr>
<td>9781908625021</td>
<td>Leadership in Health and Social Care</td>
</tr>
<tr>
<td>9781906052096</td>
<td>Neonatal Care</td>
</tr>
<tr>
<td>9781908625243</td>
<td>Numeracy and Clinical Calculations for Nurses</td>
</tr>
<tr>
<td>9781906052164</td>
<td>Palliative Care</td>
</tr>
<tr>
<td>9781906052201</td>
<td>Professional Practice in Public Health</td>
</tr>
<tr>
<td>9781906052089</td>
<td>Safe & Clean Care</td>
</tr>
<tr>
<td>9781906052157</td>
<td>The Care and Wellbeing of Older People</td>
</tr>
<tr>
<td>9781906052225</td>
<td>The Care Process</td>
</tr>
<tr>
<td>9781906052218</td>
<td>Understanding and Helping People in Crisis</td>
</tr>
<tr>
<td>9781906052010</td>
<td>Understanding Research and Evidence-Based Practice</td>
</tr>
<tr>
<td>9781908625007</td>
<td>Understanding Wellbeing</td>
</tr>
<tr>
<td>9781906052058</td>
<td>Values for Care Practice</td>
</tr>
<tr>
<td>9781908625229</td>
<td>Wellbeing: Policy and Practice</td>
</tr>
</tbody>
</table>

For more information, visit www.lanternpublishing.co.uk
NUMERACY AND CLINICAL CALCULATIONS FOR NURSES

NEIL DAVISON
Llandrillo College, North Wales
CONTENTS

Preface vi
Acknowledgements vii
How to use this book viii

1 Numeracy and calculation skills in the clinical environment 1
2 Back to basics 8
3 The SI system 53
4 Calculating drug doses 64
5 Other clinical calculations 94
6 Tests 120

Appendix 1 Administering medicines safely 137
Appendix 2 Routes of administration 139
Appendix 3 Medication administration records 141
Appendix 4 Drug glossary 143
Appendix 5 Multiplication grid 147
Self-assessment test answers 148
References 168
3.1 Introduction

The SI system is an adaptation of the metric system and is almost universally employed in business, science and healthcare. The name SI is an abbreviation of the ‘International System of Units’, which was derived from the French ‘Système International d’Unités’.

In healthcare, there is often a need to measure things, usually weights and volumes. In the SI system, volume is measured in litres and weight is measured in kilograms.

SI prefixes

SI units are used to quantify measurements, some extremely large and some extremely small. Standard prefixes are used to describe and name the quantities involved, irrespective of what is being measured.

The most commonly used prefixes that apply to clinical practice are:

- **Mega** – this prefix indicates millions. Benzylpenicillin, a penicillin antibiotic that is administered by injection, is available in vials containing one mega unit.
• **Milli** – this prefix indicates a thousandth of a unit. One milligram is one thousandth of a gram. Aciclovir dispersible tablets, used to treat shingles, contain 800 milligrams.

• **Micro** – this prefix indicates a millionth of a unit. One microgram is one millionth of a gram. (There are one thousand micrograms in one milligram and one thousand milligrams in one gram. One thousand multiplied by one thousand equals one million.) Glyceryl trinitrate, taken to relieve angina, is available in tablets containing 500 micrograms.

• **Nano** – this prefix indicates a thousand-millionth of a unit. This is extremely small and rarely used in clinical practice.

3.2 Volume

Volume is measured in litres or subunits of a litre, millilitres. 1000 millilitres is equal to one litre. The standard abbreviation for litre is L and the abbreviation for millilitre is ml.

Measuring volume

Drawing up medication in a syringe to accurately reflect a prescription is a common task in clinical practice. Syringes are available in several sizes. Reading the volume contained in the syringe is a pre-requisite to accuracy.

<table>
<thead>
<tr>
<th>SYRINGE SIZE</th>
<th>NUMBER OF GRADUATIONS</th>
<th>VOLUME OF EACH GRADUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ml</td>
<td>20</td>
<td>0.05 ml</td>
</tr>
<tr>
<td>2 ml</td>
<td>20</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>5 ml</td>
<td>25</td>
<td>0.2 ml</td>
</tr>
</tbody>
</table>

Figure 3.1. A 1 ml syringe containing 0.3 ml.

Figure 3.2. A 2 ml syringe containing 1.6 ml.
Medicine pots are commonly used for the administration of oral solutions. When measuring liquids in a pot, read the lower meniscus line as the liquid may rise slightly against the medicine pot wall.

Figure 3.4. A 25 ml medicine pot containing 20 ml.

Within the SI system it is standard practice that unit abbreviations are written in lower case, but because litre abbreviated to ‘l’ could be confused with the number ‘1’, it is abbreviated to a capital letter ‘L’. It is also important to remember that when expressing plurals, there is no ‘s’ on the end of the abbreviated form. We may talk of a patient drinking 250 millilitres of tea, but when written this becomes 250 ml. It is also standard practice that the abbreviated form of the SI unit does not have a full stop after it, unless it is at the end of a sentence.

3.3 Weight

Kilograms

The SI unit of weight is the kilogram, which can be subdivided into smaller units several times. Kilograms are useful when measuring large items like body weight, but when measuring small amounts of drugs, alternative units of measurement are needed. The unit smaller than one kilogram is a gram, and 1000 grams equal one kilogram.

The abbreviation for gram is ‘g’.
Converting from a larger unit to a smaller unit

RULE OF THUMB

Converting from a larger unit to a smaller unit means that you multiply by 1000.

Converting from a smaller unit to a larger unit means that you divide by 1000.

To convert 0.125 kilograms to grams:

\[0.125 \times 1000 = 125 \text{ grams} \]

It’s useful to remember that when multiplying by 1000, the decimal point moves three places to the right, i.e. one place for each zero.

0.125 becomes 125 (arrows show the decimal point move)

Converting from a smaller unit to a larger unit

To convert 125 grams to kilograms:

\[125 \div 1000 = 0.125 \text{ kg} \]

Remember that when dividing by 1000, the decimal point moves three places to the left.

125 becomes 0.125 (arrows show the decimal point move)

Self-assessment test 3.1: converting kilograms and grams

The recap questions below will help to consolidate your learning about conversions between these two units of measurement. Answers can be found at the end of the book.

1. How many grams are in 1.3 kg?
2. How many grams are in 1.25 kg?
3. How many grams are in 0.8 kg?
Self-assessment test 3.1: converting kilograms and grams (continued)

4 How many grams are in 0.125 kg?
5 How many grams are in 1.204 kg?
6 How many grams are in 0.5 kg?
7 How many grams are in 2.03 kg?
8 How many grams are in 0.032 kg?
9 How many grams are in 1.005 kg?
10 How many grams are in 0.002 kg?
11 How many kg are in 2500 grams?
12 How many kg are in 4025 grams?
13 How many kg are in 750 grams?
14 Identify the amount shown on the scale:

 ![Scale Diagram](#)

15 Identify the amount shown on the scale:

 ![Scale Diagram](#)

Grams and milligrams

Grams are widely used within clinical practice in drug administration. Grams can be divided into smaller units called milligrams; there are 1000 milligrams in one gram. Two 500 milligram paracetamol tablets are the equivalent of one gram. The correct abbreviation of milligram is ‘mg’. Morphine is an opioid analgesic frequently used to control severe pain; it can be injected (intramuscularly, intravenously, and subcutaneously) and administered orally. As an oral solution, it is available in several different strengths. One of these contains 2 mg in 1 ml, therefore in 5 ml there are 10 mg.
Self-assessment test 3.2: converting grams and milligrams

The recap questions below will help to consolidate your learning about conversions between these two units of measurement. Answers can be found at the end of the book.

1. How many milligrams are in 1.04 g?
2. How many milligrams are in 1.005 g?
3. How many milligrams are in 0.001 g?
4. How many milligrams are in 2.202 g?
5. How many milligrams are in 1.016 g?
6. How many milligrams are in 0.33 g?
7. How many milligrams are in 0.75 g?
8. How many milligrams are in 0.06 g?
9. How many milligrams are in 1.018 g?
10. How many milligrams are in 0.106 g?
11. How many grams are in 1500 mg?
12. How many grams are in 2200 mg?
13. How many grams are in 900 mg?
14. Metformin is a drug used in diabetes. It is available in 850 mg tablets. Express this in grams.
15. Augmentin, an antibiotic, is available in 625 mg tablets. Express this in grams.

Micrograms

Milligrams can also be divided into smaller units called micrograms. There are 1000 micrograms in one milligram. Converting milligrams to micrograms follows the same rule as when converting kilograms to grams and grams to milligrams.

To convert 0.25 mg to micrograms:

\[0.25 \times 1000 = 250 \text{ micrograms}\]

Remember that when multiplying by 1000, the decimal point moves three places to the right, i.e. one place for each zero.

0.25 becomes 250 (arrows show the decimal point move)
Self-assessment test 3.3: converting milligrams and micrograms

The recap questions below will help to consolidate your learning about conversions between these two units of measurement. Answers can be found at the end of the book.

1. How many micrograms are in 1.25 mg?
2. How many micrograms are in 1.062 mg?
3. How many micrograms are in 0.075 mg?
4. How many micrograms are in 0.220 mg?
5. How many micrograms are in 1.028 mg?
6. How many micrograms are in 0.009 mg?
7. How many micrograms are in 0.7 mg?
8. How many micrograms are in 0.125 mg?
9. How many micrograms are in 1.5 mg?
10. How many micrograms are in 0.75 mg?
11. How many milligrams are in 1200 micrograms?
12. How many milligrams are in 800 micrograms?
13. How many milligrams are in 250 micrograms?
14. Salbutamol is a drug used in asthma by inhaler. Each inhalation is 100 micrograms. Express this in milligrams.
15. Glyceryl trinitrate is a drug used in angina. It is available in several strengths, but if a tablet (placed under the tongue) contains 0.6 mg, what is this amount expressed in micrograms?

ERROR ALERT

There are two abbreviated forms of microgram ‘mcg’ and ‘μg’ but the use of these in clinical practice is controversial. For patient safety reasons, many hospitals demand that microgram is written in full to avoid confusion with ‘mg’. If you see microgram abbreviated on a prescription, contact the prescriber to get the unit written in full, which could avoid a catastrophic drug overdose.
Conventions for prescriptions state that drugs should be prescribed in whole amounts, not decimal fractions. A prescription for digoxin should read 125 micrograms, not 0.125 mg, so you must be able to convert between units.

KEY POINT SUMMARY

- 1000 micrograms = 1 milligram (mg)
- 1000 milligrams (mg) = 1 gram (g)
- 1000 grams (g) = 1 kilogram (kg)

3.4 Pressure

The commonly used unit for the measurement of blood pressure in clinical practice in the UK is millimetres of mercury, which has the abbreviation ‘mmHg’. Capital letters aren’t routinely used as abbreviations for units of measurement, but Hg is the international symbol for the element mercury. You will see this displayed on sphygmomanometers used to measure and record a patient’s blood pressure.

There is also an SI unit for pressure called the pascal (abbreviation Pa), which is named after the French physicist and mathematician Blaise Pascal (1623–1662). The pascal is a small unit so you are more likely to see it referred to using the prefix kilo, as kilopascal (kPa). The prefix kilo means 1000, so one kPa is equal to 1000 pascals. One kPa is equal to approximately 7.5 mmHg.

<table>
<thead>
<tr>
<th>NON-SI UNIT FOR PRESSURE MEASUREMENT</th>
<th>SI UNIT FOR PRESSURE MEASUREMENT</th>
<th>COMPARISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>millimetres of mercury mmHg</td>
<td>pascal Pa</td>
<td>1 kPa = 7.5 mmHg (approximately)</td>
</tr>
</tbody>
</table>

ERROR ALERT

Where drug doses depend on body weight, as when using low molecular weight heparin, accurately weigh the patient. Guessing or asking patients to estimate their body weight is a known source of drug error and a potentially dangerous practice (NPSA, 2010).
The kPa is recognised as the standard unit for measuring blood gases in the UK, so you are likely to come across arterial blood gas analysis reports using kPa in intensive care and high dependency units, and on respiratory wards.

Blood for gas analysis is taken from an artery and is tested to find out the amount of oxygen and carbon dioxide contained within it. A unit of pressure like the kPa or mmHg is used to measure this as the mixture of gases in the blood each have a pressure. In a mixture of gases, each gas exerts a partial pressure, indicated as PaO₂ for oxygen and PaCO₂ for carbon dioxide. The pH of blood is also measured in arterial blood gas analysis.

Arterial blood gas normal values are summarised in the following table.

<table>
<thead>
<tr>
<th>NAME</th>
<th>NORMAL VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO₂</td>
<td>75–100 mmHg</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>34–45 mmHg</td>
</tr>
<tr>
<td>pH</td>
<td>7.35–7.45</td>
</tr>
</tbody>
</table>

Self-assessment test 3.4: summary test

The recap questions below will help to consolidate your learning about the contents of this chapter. Answers can be found at the end of the book.

1. How many milligrams are in 1.3 g?
2. How many milligrams are in 0.8 g?
3. How many milligrams are in 1.125 g?
4. How many milligrams are in 0.6 g?
5. How many milligrams are in 0.505 g?
6. How many micrograms are in 0.75 mg?
7. How many micrograms are in 1.001 mg?
8. How many micrograms are in 0.07 mg?
9. How many micrograms are in 0.902 mg?
10. How many millilitres are in 1.5 L?
11. How many millilitres are in 2.25 L?
12. How many millilitres are in 0.1 L?
13. How many millilitres are in 0.075 L?
Self-assessment test 3.4: summary test (continued)

14 How many millilitres are in 0.005 L?

15 What volume of fluid is in the syringe shown?

![Syringe diagram]

16 What volume of fluid is in the medicine pot shown?

![Medicine pot diagram]

17 Complete the table by converting the SI units.

<table>
<thead>
<tr>
<th>GRAMS (g)</th>
<th>MILLIGRAMS (mg)</th>
<th>MICROGRAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>120</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write your answers to questions 18 to 22 in milligrams.

18 22.5 mg + 4600 micrograms =

19 1.6 mg + 500 micrograms =

20 4.005 mg + 6 micrograms =

21 123 mg – 900 micrograms =

22 6 mg – 25 micrograms =
Self-assessment test 3.4: summary test (continued)

23 Place the following weights into ascending order, starting with the smallest. 200 mg, 1100 micrograms, 1.5 g, 5 mg, 65 micrograms, 0.5 g, 0.25 mg, 25 micrograms, 1.5 mg, 0.005 mg, 3 micrograms, 2 g, 2100 mg, 1.6 mg, 1607 micrograms, 750 mg, 0.22 g, 0.034 mg, 0.065 g, 0.125 g, 400 micrograms

24 A patient is prescribed 300 mg of a drug to be taken at breakfast and lunchtime and a dose of 450 mg in the evening. How many grams per day does the patient take?

25 A liquid medicine contains 20 mg in 5 ml.
 a How many milligrams are in 7.5 ml?
 b How many milligrams are in 12.5 ml?

26 A patient takes lorazepam 1 mg as sedation before a minor surgical procedure. How many micrograms is this?

27 A patient takes tamsulosin hydrochloride 400 micrograms for benign prostatic hypertrophy. Express this quantity in milligrams.

28 A patient is given 1.5 g of the antibiotic cefuroxime. How many milligrams is this?

29 A patient takes a sodium valproate 300 mg modified release capsule. Express this amount in grams.

30 A patient wears a glyceryl trinitrate 5 mg patch for 24 hours. How many micrograms is this?

KEY POINTS TO TAKE AWAY FROM THIS CHAPTER

- The SI system means that volumes and weights can be written in whole numbers which increases patient safety.
- The strict conventions in the use of abbreviations, plurals and capital letters within the SI system are to ensure accuracy and safety.
- Some units, like mmHg, which is used to measure pressure in clinical practice, are not from the SI system but are acceptable and safe.